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Abstract

We have derived stability results for high-order finite difference approximations of mixed

hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained

using summation by parts and a new way of representing general linear boundary con-

ditions as an orthogonal projection. By rearranging the analytic equations slightly we

can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our

technique so as to yield strict stability on curvilinear non-smooth domains in two space

dimensions. Finally, we show how to incorporate inhomogeneous boundary data while re-

taining strict stability. Using the same procedure one can prove strict stability in higher
dimensions as well.





1 Introduction

When solving a partial differential equation numerically it is necessary to have some bound

of the growth rate of the solution, since otherwise round-off errors could grow arbitrarily

fast. This upper bound can be established by ensuring some kind of stability. We have

elected to use the energy method, because it can be applied to the continuous as well as

the discrete model. Furthermore, it can be applied to general domains, which is important

when studying multidimensional problems.

Stability of the continuous problem is established by means of an integration-by-parts

procedure introducing boundary terms, some of which must be eliminated to ensure sta-

bility. For the finite difference model integration by parts is replaced by summation by

parts. This amounts to designing the discrete difference operator ensuring that, in ad-

dition to the accuracy requirements, certain conditions of antisymmetry are met. As a

consequence, the common problem of finding proper "numerical" boundary conditions

will be eliminated; they will be built in the discrete difference operator.

The analytic boundary conditions are yet to be incorporated. We propose a certain

projection operator, which interacts with the difference operator so as to generate bound-

ary terms that are completely analogous to those of the continuous problem. This can be

done for any type of linear boundary conditions. Thus, an energy estimate is obtained

for the discrete problem, provided there is one for the analytic model. This conclusion

remains true for domains in several space dimensions, even if the boundary is non-smooth.

Furthermore, using this projection operator allows us to derive stability results for a larger

class of finite difference operators than those considered in [5]. Stability will be proved

for high-order finite difference approximations of mixed hyperbolic-parabolic variable co-

efficient systems subject to general inhomogeneous boundary conditions.

1.1 An Introductory Example

To illustrate the underlying principles of the energy method we consider the convection-

diffusion equation

ut=u_x+u_, xE(0,1) t>0

u(x, O) = f(x)

u(0, t)=o
ux(1,t)=g(t)

In the sequel we shall use the standard L2-scalar product

v) = uvdx

with the corresponding norm defined as Ilull 2 = (u, u).

We can obtain an a priori estimate for this example using the following tools.



(i) Integration by parts:

d 2
_llull = 2(u, u_) + 2(u, ux)= -21lu=ll = + 2(u,u_) + 2uuxl_o

(ii) Boundary conditions:

d

d-_llull2= -21N_II_+ 2(u,u_) + 2u(1,t)g(a,t)

(iii) Cauchy-Schwarz inequality:

d 2
_llull <--2IN_II 2 + 211ullllu_ll + 2u(X,t)g(1,t)

(iv) Algebraic inequality:

implies (e = 1)

2[xy] < ex 2 + e-l y 2

dllult _ -Ilu_ll=+ Ilull2+ u(1, t)_+ g(1,t) 2

(v) Sobolev inequality:

I_1_< _llu_ll=+ (_-x+ 1)11_11'

is used to eliminate u(1, t) (e = 1)

d i_ j2d_llul < 311ul +g(1,t) 2

which can be solved analytically to yield

<_
If we are to obtain such an estimate for a system of equations we will also need

(vi) The adjoint of A:

(u, Av) = (Aru, v)

Summing up, the energy method boils down to the six basic "tools" above. In the subse-

quent sections we shall see how these principles can be modified so as to give an energy

estimate for the semi-discrete system.



2 General Principles for the Semi-discrete Case

In this section the basic principles of the energy method will be transferred to the semi-

discrete case. Furthermore, a number of lemmas, which will be needed later, will be

proved. Throughout this section grid vectors will be denoted by vT : ( vT" " " YuT), Vj E R d.

Difference operators approximating O/Ox will be designated by

: " I E R dxd

D = -_ d;oI ... d_,I

where D is written as a square matrix for convenience; in reality D will be a banded

matrix, where the bandwidth is independent of the mesh size h = L/u.

2.1 Summation by Parts

In the semi-discrete case we employ summation by parts instead of integration by parts.

The basic idea is to use difference operators satisfying

(u, Dv)h = uT v_ -- UroVo - (Du, v)h (1)

with respect to a weighted scalar product

1/

(u,v)h = h E  ;,uTvj
i,j=O

It should be remarked that the usual Euclidean scalar product cannot be used. To prove

the existence of summation by parts, it suffices to consider scalar products on the form

(y_(1) )
E = I , E (t) E R (_+l)e×(T_+a)d, l = 1,2 (2)

2(2)

where the blocks of _ are given by Eij = ¢rijI, I E RdXd; rt and the elements of E (l),

l = 1,2 are independent of h. The following existence proof can be found in [5].

Proposition 2.1 There exist scalar products (2) and difference operators D of accuracy

2p - 1 at the boundaries and 2p in the interior, p > O, such that the summation-by-parts

property (1) holds.

Confining ourselves to the case where N(1) and N(_) are diagonal we have the following

existence theorem [4].
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Proposition 2.2 There exist diagonal scalar products (2) and difference operators D of

accuracy p at the boundaries and 2p in the interior, 1 <_ p < 4, such that the summation-

by-parts property (I) holds•

Remark: If one omits the requirement that the boundary stencils be at least accurate

of order p for a given interior accuracy 2p, it is possible to prove summation by parts for

diagonal scalar products and difference operators D of arbitrary order of accuracy [7]. For

a given boundary accuracy p, however, it may be necessary to resort to interior stencils

of accuracy q >> 2p, which may render these operators useless in practice.

The actual computation of the operators above is ill-conditioned, since it involves the

solution of a rank-deficient problem• Using a symbolic language it is possible to solve

for D exactly, the elements of which in general will depend on one or more parameters.

Explicit examples can be found in [6]. For details on the algorithms we refer to [8]. The

simplest example is furnished by

-1 1

-0.5 0 0.5

-0.5 0 0.5

-1 1

(3)

with the corresponding scalar product

0.5

1

0.5

(4)

Summation by parts can be generalized to several space dimensions if we restrict our-

selves to diagonal norms• To simplify the notation we consider only the two-dimensional

case. A general proof is given in [6]. The grid function u_j is partitioned as u T =

(uT...u,_T), u T = (uTj...uT_j), j = 0,...,u2. Define the weighted scalar product as

U U

=hE E (5)
i=O j=O

where we have assumed the same number of grid points in both dimensions for conve-

nience only; h = hi h2 is the cell area. Let D1 and D2 denote the difference operators

approximating O/OXl and O/Ox2. Define

1

(Dlu)ij = _ _ d, kukj
k=O

1

( D2u),3 = -_2 _ djku,k
k--O

(6)



where it is assumed that the cr's and d's satisfy (1). Hence

" )(U, nlv)h = h 2 Z o'j °'i?£T Z dikvkJ

j=0 k=0

and a similar expression holds for (u, D2v)h. The parenthetical expression satisfies (1) for

each j. We thus arrive at

Proposition 2.3 Let the discrete difference operators D1 and D2 be defined by (6). Sum-

mation by parts then holds in both dimensions

(u, Dlv)h = h2 _ rcrjuL,jv_,j -- h2 o'jUTojVoj -- (Dl u, v)h
j=0 j=o

y_ aiui,,vi,, - h, _ a, uTvio --(D2u, v)h(u, D2v)h = hi T
i=0 i----0

where (',')h is defined by (5).

Remark: This is the discrete counterpart of the two-dimensional divergence theorem.

With a general domain _ we assume that there is a smooth map ( = ((x) taking fl

onto the unit cube where proposition 2.3 can be applied. The assumption of such a

map _ is necessary in order for finite difference methods to apply to curvilinear domains.

Consequently, integration by parts can always be replaced with summation by parts in

the discrete case. It is presently unknown if it possible to obtain the summation-by-parts

property in more than one dimension using non-diagonal norms.

2.2 Projections

Suppose that the model equation of section 1.1 were discretized as

vt = D2v + Dv

v(O) = f
(:)

where we have assumed homogeneous Neumann data for convenience; it will be shown

later how to treat inhomogeneous boundary conditions. For every fixed h the problem

above is a constant coefficient ODE system with a unique analytic solution. Consequently,

there is little hope that the discretized boundary conditions vo(t) = (Dv),(t) = 0 are

fulfilled, since they have not been accounted for so far.

Denote by V C R TM the vector space where vo(t) = (Dv)_(t) = 0, and let P be a

projection of v onto V. Multiplying (7) by P yields

(Pv)t=P(D_v+Dv)



Any solution satisfying the boundary conditionsmust obey v = Pv, whence

vt = P (D2v + Dv)

Conversely, we have

Proposition 2.4 Let P E R sxs be a given projection independent of t, and suppose that

v(t) C R _ is a solution of the non-linear ODE system

vt = PR(t,v) + (I- P)g_ (8)
v(O) = f

where f satisfies f = Pf + (I - P)g(O). Then

v(t) = Pv(t) + (I- P)g(t), t > 0

Proof:

Since P is independent of t, premultiplication of (8) gives (p2 = p)

(Pv)t = PR(t,v)

Using this equality in (8) implies

vt = (Pv + (I - P)g)t

Hence, by integration,

(I - P)(v(t) - g(t)) = (I- P)(f - g(O))

which proves the proposition. []

Remark: g(t) represents the boundary data, and (I - P)(v - g) = 0 is the extension of

(I - P)v = 0 to inhomogeneous boundary data. Proposition 2.4 thus tells us that any

solution to (8) will satisfy the boundary conditions if the initial data do so.

In general P is not uniquely defined. Consider the vector space V = {v E R "+1 Iv0 =

0, v, = v_-i }. Then

/° / /°1 1

p= ... P= "..

1 0 1

1 0 1

both imply Pv E V. To shed some light on how to choose P, we apply the energy method

to (7)

dllvll = + Dv))h2(v,P(D2v

6



If P were self-adjoint w r t (., ")h, then

d

d- llvll = 2(Pv, D2v + Ov)h = 2(v, D2v + Dv)h

where the last equality follows from proposition 2.4. The crucial condition to obtain tills

equality is expressed by

(u, Pv)h=(Pu, v)h (9)

which states that P is an orthogonal projection (using the weighted scalar product (., ")h).

Suppose that u(x, t) C R d, x C R n is a solution to

ut=F(x,t,O)u xCf_

L(x,O)u = 0 z E r

where 0 denotes the n-dimensional gradient; F is the boundary of fL This system is

discretized in space, possibly requiring a coordinate mapping onto the unit cube

vt = PG(t, D)v

The projection P should be such that v fulfills

LTv = 0

where L now represents a discretization of the analytic boundary conditions. Let V =

{v C Rm]LTv = 0}. According to the preceding discussion P is taken to be the orthogonal

projection onto V (with respect to (., ")h). The boundary conditions can be written as

QTEv = 0

where Q = E-1L. Hence, the boundary conditions are fulfilled for all vectors v that

are orthogonal to the column space of Q, the orthogonal projection onto which reads

Q(QTEQ)-IQTE. In case E = I this is the standard projection. The desired boundary

projection is thus given by

P = I- Q(QTEQ)-IQTE

or

P = I- E-'L(LTE-'L)-IL T (10)

Remark: In order for the projection to be well-defined the inverse of LTE-1L must exist,

which follows iff L has full column rank. The latter will follow from assumptions on the

analytic boundary conditions (consistency arguments).

Proposition 2.5 Suppose that L has full column rank, and let P be defined by (10).

Then

(i) p2= p



(ii) EP = pTE

(iii) v = Pv ¢=_ LTv = 0

Proof:

All statements are immediate consequences of (10).

Remark: The second statement of proposition 2.5 is equivalent to (9).

[]

2.3 A Discrete Sobolev Inequality

As seen in section 1.1 it is necessary to have a Sobolev inequality. The following proposi-

tion shows that there is a discrete Sobolev inequality for the norms that we are interested

in. We present it in a form suitable for proving strict stability.

Proposition 2.6 Let I1" lib and D be defined by (2) and (1),respectively.

Ivl_ _<ellDvll_ + (e-1 + 1 + O(h))Ilvll_

where e > O.

Then

Proof:

Choose k, l such that

Eq. (2) implies that

Ivkl_ = mini (Ivjl_)
Iv,I_ = max./(Ivjl _) _ IvlL

_--r 2

IlvllN_ h (_hlvO)l_+ _X21vt2)12)+ h _ Ivjl_
j=rl +1

where A1,2 > 0 are the smallest eigenvalues of y](1,2). Note that A1,2 are independent of h.

Hence

Ilvll__>(1 - h (rl(1 - A1) + r2(1 -- A2)))Ivkl =

where we have used hu = L = 1. If c -- rl(1 - A1) + r2(1 - As) _< 0 one immediately gets

Ivkl_ <_Ilvll_. Otherwise we choose h such that hc < 1. Hence

1 C

Ivkl=_ 1_h-------VIIvll_ _ (1 + Kh)llvll_ K= 1-hoc (11)

for h _< h0, where h0 is a fixed number such that hoc < 1.



Next, we definea family of norms,which is obtained by shrinking the interior of (2);

E(1,2) remain constant. Allowing a slight abuse of notation we write these norms as

8

(_,v)h,r,s= E _,,juTv_

where r _> 0 and s < u. Shrinking the interior of D accordingly one has

(v, Dv)a,k,, = Iv, l2 - Ivkl 2 - (Dr, v)_,_,,

i. e.,

Ivl_ _ Ivkl_+ 211DvIIh,k,_llvllh,k,,

Obviously IIvllh,k,__ IIvllh,o,__ IIvllh,whence

IvlL_<_lID_ll_+ (c' + 1+ o(h))IIvll_

where (11) and the standard algebraic inequality have been used. []

2.4 Adjoint Operators

As usual A T denotes the transpose of A. We know from section 1.1 that (u, Av) =

(ATu, v), i. e., the transpose of A is the adjoint operator. The question is whether A T

also is the adjoint operator with respect to (., ")h as defined by (2). Let

A0
A _ °°

A_

Aj= A(jh), j=O,...,u, hu= 1 (12)

denote the matrix representation of A(x) C R dxd, x E [0, 1]. Smoothness will be assumed

as needed.

Lemma 2.1 Let E and A be defined by (2) and (12), respectively.

I(u, Av)h -- (aTu, v)h[ <_ O(h)llullhllvllh

Proof:

Denote the commutator of _ and A by [_, A]. Then

(u, Av)h = (A:ru, V)h + huT[E,A]v

where

[NO), AO)] )
[2, A] = 0

[_(_), A(2)]

Then

(13)
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with

[F,(1), A 0)] =

0

-aol(A1 - Ao)

-Cro_(A_ - Ao)

ao_(A_ - Ao) Icrol(A;- Ao) ... Crar(Ar- A1)

J-al_(A_-A1)

The other non-zero block has a similar structure. Assuming that A(x) is differentiable we

can apply the mean value theorem

0

[E 0), A (1)] = h -°°IA_°.

-ao_rA_o -O'l;(r - 1)A'_,

"'" a°_rAt_° 3

• .. aid(r- 1)A1_1

Hence,

I(u,Av),, v),,I_<clA'looh(lu(1)llvO)l+ luI )llv(2)l)_ O(h)llullhllvll, 

which proves the lemma. []

Remark: According to lemma 2.1 the transpose of A is an approximate adjoint with

respect to (., ")h, and the perturbation consists of lower order terms. The following as-

sumption will be crucial when proving strict stability for hyperbolic systems.

Assumption 2.1 Let A and E be given by (12) and (2). Then one of the conditions

below is assumed to hold.

(0 E is diagonal diag(aoI.., a.I).

(ii) The blocks of A satisfy Ao = .... A_, and A,-_+I ..... A,.

Corollary 2.1 If assumption 2.1 holds, then (u, Av)h = (ATu, v)h.

Proof:

In both cases we get [E, A] = 0. The result follows immediately from (13)• []

Remark: The latter criterion is satisfied if there is a 5 > 0 such that A(x) = const for

0 < x < 5 and 1 - 5 < x < 1, and if h is chosen such that hr < 5, where r = max(rl,r2).

Corollary 2.2 Let A be given by (12). If A is symmetric then then (u, Au)h = (Au, U)h.

Proof:

A symmetric implies that [E, A] is antisymmetric. Hence aT[E, A]u = O. []
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2.5 Some Operator Estimates

In this subsection we have gathered some operator estimates that will be needed in sub-

sequent sections. The results are valid for norms defined by (2) unless otherwise stated.

In particular, the estimates will be given in a form suitable for proving strict stability of

the semi-discrete systems.

Lemma 2.2 Let E and A be defined by (2) and (12). Then

I(u, mv)hl < IAI_(1 +O(h))llullhllvllh

where Iml_ = sup IA(z)l.

Proof:

The definition of (., ")h implies that (u, Av)h = h_tTA_, where ft = E1/2u, _3= Ea/2v, and

= E1/2AE-1/2 . Taylor expansion yields A = A + R,

R(1) )
R= 0

R(2)

with R (0 = O(h), 1 = 1,2. Thus

I(_,Av)hl _ IAI_II_IIII_II + O(h) (11_('11111¢1)11+ 11_(_lllll_t2)ll)

i. e.,

I(u, Av)hl _ (IAIoo + O(h)) II_llll_ll

where II" II denotes the standard Euclidean norm. Since I1_11= IlUllh, I1_11= [IVllh, the
lemma follows. []

Corollary 2.3 If, in addition to the hypotheses of lemma 2.2, assumption 2.1 is fulfilled,
then

I(u, Av)hl <_IAIo_llullhllvllh

Proof:

The hypotheses imply that .J. = A, and the corollary follows. []

Remark: Lemma 2.2 states that the growth rate induced by low order terms is the same

(modulus O(h)-terms) in the continuous and the semi-discrete case.

It is well-known that (u,[D, Alv)h < II[D,A]llhll_llhllvllh, where tl[D,A]IIh can be

bounded independent of h. This result can be sharpened under certain circumstances.
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Lemma 2.3 Let D be a difference approximation satisfying the summation-by-parts rule

(1) with respect to a weighted norm (2), and define A by (I2). Suppose that assumption

2.1 holds. If A is symmetric, then

(u, [D,A]v)h_<_p([D,A])tlullhllvll_

Proof:

According to the definition of the operator norm we have

II[D,A]II_=max II[D,A]vlI_=max hwTC_Cw
II,,ilh=l II_li=l

where W _--- _l/2v, C : E1/2[D,A]E-1/2: Because of the assumptions on A (or E) we have

C = DA - AD, where/) = E1/_DE -1/2. Summation by parts implies that

1(/ )ED=Ds+D_, Ds=_ 0 IER e×a
I

and D= is an anti-symmetric matrix. Consequently,

C = [E-]/2D=E-1/2, A]

where we have used [E-1/2DsE -]/2, A] = 0. Since D= is anti-symmetric and A symmetric

we have C T = C, i. e.,

[I[D,A]I[_ = max hwTC2w = p(C) 2
I1_]1=1

Finally, C = E1/2[D, A]E -1/2 implies that

II[D,A]llh = p([D,m])

which proves the lemma. E]

3 Homogeneous Boundary Conditions in One Di-
mension

We shall successively consider hyperbolic, parabolic and mixed hyperbolic-parabolic sys-

tems. Variable coefficient matrices will be allowed. To simplify the presentation we shall

only deal with the lower boundary x = 0, which is justified if we take the solution to have

compact support. In general, the upper boundary x = 1 is treated in a fashion similar to

the procedure at the lower boundary.

12



3.1 Hyperbolic Systems

Consider the hyperbolic system

ut = Au_ + Bu + F

u(x,O) = f(x)

u_(O,t) = Lu+(O,t)
x C (0,1) ( )h(x, t) = A_(x, t)
L C R dlxd2 A+(x,t) (14)

where u C R d, da + d2 = d; A_, A+ is the partitioning of A into negative and positive

eigenvalues. It is assumed that the elements of the diagonal matrix A never change sign

at the boundaries x = 0 and x = 1, and that there is a constant 7 > 0 such that

A_(j,t) < --_ and A+(j,t) > _, j = 0,1 This implies that the rank of L is constant.

Furthermore, L is assumed to be "small".

The discrete boundary conditions are written as LTv = O, where

L T= ( L T 0 ... 0 ) E R dlx(v+l)d (15)

Here L T = ( I -L ) E R dlxd, the latter L being the analytic boundary operator. It

follows immediately that rank(L) = rank(I) = dl. The hypothesis of proposition 2.5 is

thus satisfied, and we have the semi-discrete system

v, = P(ADv + By + F) ( A(0, t) ]
v(0) = f A = ".. (16)/ )A(1,t)

Proposition 3.1 Let (.,.)h be given by (2) and suppose that D satisfies the conclusion

of proposition 2.1. If P is defined by (10) and (15), then the solution of (16) satisfies an

energy estimate

Proof:

The energy method yields (using propositions 2.5, 2.4)

d

d--_llvll _ = 2(v,v_)h = 2(v,P(hDv + By + F))h = 2(v, ADv)_ + 2(v, Bv)h + 2(v,F)h

Summation by parts implies (v, = 0)

(v, ADv)h = --v0TA0v0 -- (Dv, Av)h - (v,[D, Alv)h

Hence, by lemma 2.1

1 T 1 (KollvllhllhDvllh + ll[D, Alllhllvll_)(v, ADv)h <_ -_Vo Aovo +

13



wherehD is a bounded operator, i. e.,

1 T 1
(v, ADv)h <_ --_v o A0v0 + _ (/(1 -Jr-II[D, A]lln)Ilvll_

Now, according to propositions 2.4, 2.5 we have Lrv = 0, which is equivalent to v_ = Lv+

(the latter L denoting the analytic boundary operator). Thus

7
vgA0vo = vTA_v_ + vTA+v+ = v T (A+ + L TA_L) v+ >_ 71v01=

where the last inequality follows from the boundary conditions and the assumptions on

L and A. Note that the analytic problem would result in exactly the same inequality.

Hence

7 l= 1 (1(1 +l][D,A]llh) llvllZ(v, ADv)h <_ -glvo +

Lemma 2.1 shows that

(v, Bv)h < (IBIo_ + O(h)) Ilvll_

Consequently,

1 ((ll[O, A]llh+ 21Bl + 1 -t- K1 + O(h))llvll + IIFIl )dllvll , + Iv0l2<_
min(1,7/2)

Integration with respect to t proves the proposition with K = max(I,2/7). []

Definition 3.1 A semi-discrete approximation to the initial-boundary value problem ut =

F(x,t,O)u is said to be strictly stable, if the semi-discrete solution satisfies an energy

estimate that is exponentially bounded by exp(a't), a' = a+ O(h), where a is the expontial

growth factor of the analytic estimate•

Remark: If A (or (.,-)h) satisfies the assumption 2.1, it follows that Kx = 0. Also, by

lemma 2.3, II[D,A]llh = p([D,h]). Eq. (16) would thus be strictly stable if p([D,A]) _<

[A'lo_. In particular, (16) is strictly stable if A(x) = const, since this implies [D, A] = 0.

We also point out that the proportionality constant K is completely independent of the

discretization. In case the estimate of the boundary integral is not needed one may take

K = 1. For variable coefficient problems we have the following result:

Corollary 3.1 Let D and (., ")h be given by (3) and (4). Then (16) is strictly stable.

Proof:

According to the preceding remark the corollary follows if we can show that p([D, A]) _<

0 Ax - A0

0.5(A_ - Ao) 0 0.5(A_ - A,)

[A'[_. But

1

[D,A] = _
°

. °

0.5(Au-1 --A__2) 0 0.5(A_- Au-1)

A_ - A.-1 0

14



Assumingthat A(x)is C a the mean value theorem gives Ai- Aj = A'(_j)(i-j)h for some

_ij E (ih,jh). The corollary thus follows from the Gersgorin disc theorem. 1:::1

3.2 Parabolic Systems

We consider the parabolic system

ut = Au=: + Bux + Cu + F

u(x,O) = f(x)

Lou(O,t) + L,u,:(O,t) = 0

x E (0,1)

L°=(L L_ ) LI= ( L/)0 (17)

where L0/,1 E R d'xd, L II e R d2xd, dl + d2 = d; rank(LI) = dl, rank(L II) = d2; A, B, C,

and F depend smoothly on x and t. It is assumed that the system is strongly parabolic,

i. e., A(x,t) + A(x,t) T >_ 251.

The following lemma, a proof of which can be found in [3], will be crucial when proving

an energy estimate for the solution of (17) and its semi-discrete counterpart.

Lemma 3.1 Let A C R d×d be arbitrary and let Lo,L1 C R d×d be of the form (17). The

following conditions are equivalent:

(i) There exists a constant c > 0 such that

lu Tmu_ I < clul 2

for all u, u,: E R d that satisfy

Lou + Llu_ = 0

(ii) If a, b E R d are vectors such that

Lib=O, LIoIa=O

then

aTAb = 0

Assumption 3.1 Given the boundary matrices Lo, L1, the matrix A is supposed to be

such that the second condition of lemma 3.1 holds.

Remark: Except for Dirichlet and Neumann conditions, assumption 3.1 imposes severe

restrictions on A. Lemma 3.1 states that the assumption above is necessary in order

to obtain an energy estimate. The computations that follow will show how the second

condition, which holds by assumption, implies the first.

Before deriving the energy estimates, one more lemma is needed [3].
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Lemma 3.2 Suppose that assumption 3.1 holds and that A(x,t) + A(x,t) T >_ 251.

the d × d matrix

is non-singular.

Then

As usual the boundary conditions are written as LTv = 0, where

LT = ( Lo + _-_L1 _-_L1 d°--r-_ ... RdX(v+l)d"'" h L1 0 0) E (18)

where doj/h are the non-zero elements of the first row of D, which is a difference operator

satisfying the conclusion of proposition 2.1 or 2.2. We have

Lo + _L1 ( (doo/h)I' + h L1o

Thus, lemma 3.2 implies that L0 + (doo/h)L1 is non-singular for h > 0 sufficiently small.

From (18) it follows immediately that rank(L) = d. According to proposition 2.5 the

corresponding projection operator is well-defined, and we obtain

A(O,t) )
A = ".. (19)

A(1,t)

vt = P(AD2v + BDv + Cv + F)

v(O) = f

with similar expressions for B, C, F.

Proposition 3.2 Let (.,.)h be given by (2) and suppose that D satisfies the conclusion

of proposition 2.1. If P is defined by (10) and (18), then the solution of (19) satisfies an

energy estimate

Proof:

By propositions 2.5, 2.4, 2.1 we have

(v, PAD2v)h = (v, AD2v)h = -vT A( Dv)o - (Dv, ADv)h - (v, [D, A]Dv)h

where we have assumed homogeneous Dirichlet conditions at the upper boundary for

convenience. Due to proposition 2.5 it follows that

Lovo.3 L L11 _ doju j = Lou 0-_- il(nu)o = 0 (20)

j=O
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= ' " ' " (kerL1/) ±.Partition vj vj + vj, vj E kerL{, vj C

construction LI(Dv')o = 0. Hence, according to assumption 3.1

--vTo A( Dv)o = --VToA( Dv")o

Eq. (20) can be rewritten as

Since (Dv")o E (ker L[) ± we get

Eq. (20) implies Llolvo = 0 and by

L;)
Ll ( DV")o = - Lovo, L, = sT

s T
d2

where {sj} is a basis in ker L{. Thus, L, is non-singular, and one obtains

-vTA(Dv)o = vTAl_lLovo < 7[vo] 2, 3' = ]AL_-'Lo[_

This is exactly the same expression as one would get in the analytic case. Thus

(v, PAD2v)h < 3'lvol _ - 511Dvll_ + II[D,A]llhllvllhllDvllh (21)

Furthermore,

(v, PgDv)h <_ (IB]o_ + O(h)) llvllhllDvllh, (v, eCv)h <_ (ICIo_ + O(h)) llvll _ (22)

Finally, proposition 2.6 and the algebraic inequality yield

d- llvll + Ivo _< + O(h))Ilvll + IIFIl 

Integration with respect to time proves the proposition. []

Remark: All coefficients, except II[D,A]llh , appearing in (21) and (22) are identical

(modulus O(h)-terms) to those of the analytic estimate. Since the discrete Sobolev in-

equality 2.6 introduces the same growth rate as the analytic Sobolev inequality, it follows

that (19) is strictly stable if we have the estimate I[[D,A]llh < IA'[_o, which is true if

A(x) = const. For variable coefficients one can prove

Corollary 3.2 Let D and (., ")h be given by (3) and (4). Then (19) is strictly stable if A

is symmetric.

[]

Proof:

Same as for corollary 3.1.
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3.3 Hyperbolic-Parabolic Systems

Consider the mixed hyperbolic-parabolic system

ut = Au=: + BllUz -q- Bi2v_: + Cilu + C12v + F

vt = Av_ + B21uz + C21u q- C22v + G

x e (0,1)

u E R dl , v E R d2

Llu_(O,t) + Lou(O,t) + Mov(O,t) = 0
v_(O,t) = Sov+(O,t)+ _u(O,t) v_ C R a_ , v+ E R d_'

u(x,O) = f(x)

,(x,O) = ¢(x) (23)
As usual we assume u = v =- 0 in a neighborhood of x = 1 for convenience; L0, La are as

in section 3.2, and So satisfies the hypotheses of the boundary operator in section 3.1. The

coefficient matrices and the forcing functions of the differential equations may depend on

x and t.

The discretized boundary conditions are written as LTw = 0, where L T C R d'×{v+l)d,

d = dl + d2, d' = dl + d_ is given by

( ( nO'21- _--_LI-t_0 (I MO-SO ) ) ( _--_LIO 00 )... (_--_L1 0 00 ) 0 "'" 0 )

(24)
We want to show that L T has full rank. The first block of L T can be rewritten as

( D(h)o O)[( L 00)i -Ro I 0 + ( (h/doo)L (h/doo)Moo (h/doo)Mol )]o0 -So

where

D(h) = ( (doo/h)I' ,,,)
Since L is invertible, it follows that

is invertible, i. e., has full rank for h > 0 sufficiently small. The expression enclosed by

the square brackets thus has linearly independent rows, which in turn implies that the

first block of L T has full rank. Hence, L has full rank, and the corresponding projection

is well-defined.

The semi-discrete system is formulated as

w,= e + + + P)
w(o) =_ (uj) (25)wj= vj , j=0,...,v

18



where

A (
A(O,t)o O0)

A(1,t)0

O/o)

Bn(0, t)

(B21(0, t)

X=

B12(0, t) )A(0, t)

Bn(1, t)B21(1,t)

B12(1, t) /

A(1,t) )

__

Cll(O,t) C12(O,t))c_,(o,t) c,=(o,t)

C,_(1,t) C,2(1,t) )C2,(1, t) C22(1, t)

The forcing function/_ and the initial data _ are defined analogously•

Proposition 3.3 Let (',')h be given by (2) and suppose that D satisfies the conclusion

of proposition 2.1. If P is defined by (10) and (24), then the solution of (25) satisfies an

energy estimate

-_Ke(°'+°(h))'(llfll_,+ I1<_11_,+/o' (IIFO)II_,+ IIC(T)II_,)dT)

Proof: The energy method applied to (25) yields

d

d-illwll2 = 2(w,P(ftb_w + ADw + Ow + fi))_ = 2(w,(flD2w + ADw + Ow + fi))h

Now

i,j=o 0 0 h-_k,l=o

= h _ aiju, Aj-£7 _ djkdktul = (u, AD2u)h
i,j=O k,l=O

where D is the difference operator of (19)• The remaining terms are handled in a similar
manner• One has

19



(i) (w, AD2w)h = (u, AD2u)h

(ii) (w, ADw)h = (u, BnDu)h + (u, Ba2Dv)h + (v, B2,Du)h + (v, ADv)h

(iii) (w, Cw)h = (u, C, lU)h + (u, C,_v)h + (v, C2,u)h + (v, C22v)h

(iv) (w, F)h = (u, F)h + (v, G)h

For convenience we use the same symbol D to denote the difference operators acting on

u and v. As far as the energy estimate is concerned, the hyperbolic-parabolic system has

now been reduced to the previously treated hyperbolic and parabolic systems.

Items (iii) and (iv) consist only of lower order t_erms, and can be estimated using

lemma 2.2. Thus, the coefficients of the estimates are identical to the corresponding

analytic estimate (modulo O(h)-terms). In item (ii) the potentially "dangerous" terms

are those containing Dr. Using exactly the same technique as in the proof of proposition

3.1 we get

(v, aDv)h < -21vol _+ls/A__l_lvolluol+llRoTa-_looluol=- 4

1 (K1 + II[D,A]IIh)Ilvll_+

i. e., by means of the algebraic inequality

3' i= l= 1 (Ka + [I[D,A]IIh)IlvllZ(v,AD,,)_ _<-gl,,o +'_1,*o +

Furthermore,

1

(u,B,2Dv)h < -_IB121_ (q[vo[ 2 + e_-lluo[ 2) + II[D,g_=]llhllullhllVllh-(Du, B,2v)h

Finally, in item (i) the term (u, AD2u)h is treated as in the proof of proposition 3.2, the

only difference being that

-uToA(Vu)o : uToAL_lLouo + uToAZ{lMovo < '75 [e2lv0[ 2 + (e_ 1 + 1)luol 2]

We point out that the coefficients of the boundary terms in the inequalities above are

identical to those of the analytic estimate. Choosing ea and e2 sufficiently small we thus

arrive at

_t Ilwll_+ _ (lu012+ I_ol_) _<(_' + O(h))Ilwll2+ IIFII2+ IIGII_

where we have used Ilwll_--II_ItZ+ Ilvll_;in the right member we have used proposition

2.6 and the algebraic inequality to eliminate luol= and IIDullh. Integration proves the

proposition with K = max(l, 4/')'). []
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Remark: In case no estimate of [Vol2 is needed one may take K = 1. Also, only the

coefficients I][D,A]l]h, II[D,A]]lh, I][D, Ba2]l]h and K1 will be larger than their analytic

counterparts. If either of the conditions of assumption 2.1 is met, then Ka = 0 and the

operator norms can be replaced by the corresponding spectral radii (cf. lemma 2.3). In

particular, if A, A, B12 are constant, then (25) is strictly stable. As before, for variable
coefficients we have

Corollary 3.3 Let D and (., ")h be given by (3) and (4). Then (25) is strictly stable if A

and BI_ are symmetric.

Proof:

Same as for corollary 3.1. []

3.4 Strict stability

So far we have obtained strict stability under special circumstances, such as constant

coefficient problems or second order methods. The crux of the matter lies in estimating

the commutator [D, m]. Only in the previous cases were we able to prove that II[D,A]]lh <

IA'loo. In fact, numerical experiments show that II[D,A]llh > p([D,A]) = ZlA'loo, K > l,

for high-order methods. Typical values for D's corresponding to diagonal norms are

K = 1.67, K = 2.55, and K = 35.8, where the operator accuracy increases from three to

five. One would still obtain K > 1 even if one considered only the interior operator. This

indicates that the commutator should be avoided, which can be achieved if the analytic

problem is reformulated.

The hyperbolic system (14) can be rewritten in skew-symmetric form as

1 (2)ut= (Au)x+_Aux+ B- A' u+F

u(x,0) = f(x)

u_(O,t) = Lu+(O,t)

x e (0,1)

L E R dlxd2

The corresponding semi-discrete system becomes

v(0) = f

v + F) (26)

Proposition 3.4 Let (.,.)h be given by (2) and suppose that D satisfies the conclusion

of proposition 2.1. Define P by (10) and (15). If either A or _ fulfills assumption 2.1,

then (26) is strictly stable.
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Proof:

The energy method implies

d

_llvll_ = -vTAovo - (Dv, Av)h + (v,ADv)h - (v,A'v)h

+2(v, Bv)n + 2(v, F)a

The boundary terms are treated exactly as in the proof of proposition 3.1. Because of

corollary 2.1 we have (Dv, Av)h = (v, hDv)h. Thus, by lemma 2.2,

d "7 2 21Bl_ 1 O(h))llvll_+IIFlIZIIvll_+ _lvol _ ([A'l_+ + +

which is identical (neglecting O(h)-terms) to the analytic estimate.

Remark: If E is diagonal, then the O(h)-terms vanish identically (corollary 2.3).

The parabolic system (17) is altered in a slightly different manner.

system reads

ut=(Au_)_+(B-A')u_:+Cu+F x C (0,1)

u(x,O) = f(x)

Lou(O,t) q- Llu_(O,t) = 0

which is discretized as

[]

The modified

vt = P (DADv + (B - A') Dv + Cv + F)

v(O) = f
(27)

Proposition 3.5 Let (.,.)h be given by (2) and suppose that D satisfies the conclusion

of proposition 2.1. If P is defined by (I0) and (18), then (27) is strictly stable.

Proof:

Left to the reader. []

Finally, the mixed hyperbolic-parabolic system is reformulated as

ut = (Aux)_ + (B1, -- A')u_ + (B12v)z q- C, lu -{- (612 -- BI2)v -_- F z C (0,1)

v, = (Av). + -_Avx+ B21u. + C21u+ (C2_- h')v + a

where the initial data and the boundary conditions are identical to those of (23). In
semi-discrete form we have

wt = P (b,abw + bhw + _b,o + (d - A')w+ P)
(28)

w(o) =_
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where

0 B12(0, t) )0 A(0, t)/2

0 B12(1, t)
(0 A(1,t)/2)

Bll(0, t ) - A'(O,t) 0

( B21(0, t) A(0, t)/2 )

B11(1,t)- A'(1, t)B21(1,t)

0

A(1, t)/2 )

Proposition 3.6 Let (.,.)h be given by (2) and suppose that D satisfies the conclusion

of proposition 2. I. Define P by (10) and (24). If either i or E fulfills assumption 2.1,

then (28) is strictly stable.

Proof:

Left to the reader. []

4 Homogeneous Boundary Conditions in Two Di-

mensions

The results of section 3 will now be generalized to two space dimensions• If the boundary

is smooth, the original problem can be decomposed into two problems via a partition of

unity, one of which is a Cauchy problem. The second problem is an initial-boundary value

problem that is periodic in one space dimension, see figure below.

II + I

Consequently, summation by parts is needed only in one dimension, and the generalization

of propositions 3.1, 3.2, 3.3 to two dimensions follows immediately. For details on the
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decompositionwe refer to [3]. The situation is different if the boundary is non-smooth,
which is the casein the presenceof corners. As mentionedat the end of section2.1, it
is not known how to extend norms of type (2) so as to obtain summation by parts in
severalspacedimensions. We thus limit ourselvesto diagonalnorms, in which casewe
haveproposition 2.3.

All boundary conditions consideredso far are local. In case of characteristic and

Dirichlet conditions no new difficulties are presented in two dimensions, because each

boundary point can be treated individually. Boundary conditions involving derivatives

increase the complexity significantly. Therefore, we shall only allow normal derivatives in

the boundary operator. This is no serious restriction from the application point of view.

Thus, away from the corners these boundary conditions are locally one-dimensional. For

each such boundary point we obtain a projection operator of the previous section. In

particular, these operators commute since they affect disjoint sets of grid points. At cor-

ners the situation is more complicated, because there are two different normal derivatives,

which implies that the corresponding projection no longer is locally one-dimensional.

P1

Pc ; w

P2

/°1, P2, Pc commute

Throughout this section we shall focus our interest on the origin, and assume that the solu-

tions are supported only in a neighborhood of (0, 0). The remaining boundary conditions

will be accounted for by applying the projection operators corresponding to the boundary

point in question. Since these operators commute, the resulting product is the uniquely

defined boundary projection. The domain of definition is taken to be fl = (0, 1) x (0, 1)

with boundary F. It will be shown later how to extend the results to curvilinear domains.

In order to simplify the presentation all lower order terms will be omitted.

4.1 Symmetric Hyperbolic Systems

Consider
2

ut = _ A_u,_, + F,
i=l

u(x,O) = f(x)

 o1(x,t)=

x E a = (0,1) x (0,1),

x =
xEF

uER d

(29)
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where _9i, _I1 denote the locally ingoing and outgoing characteristic variables; Ai =

Ai(x, t), i = 1,2 are symmetric and S(x) is assumed to be "small". It should be noted

that p1 E R d1(z), qOI1 • R d2(x), where da(x) + d2(x) = d, x • F. The matrix

2

A(x) =_-_ n,(x)Ai(x) (30)
i=1

can be diagonalized for every x • F; n(x) = (na(x),n2(x)) is the outward unit normal of
F. Hence

A(x) = QT(x)A(x)Q(x), x • F (31)

The characteristic variables are only needed at the boundary, and they are defined as

_(x,t) = QT(x)u(x,t). It will be assumed that A(x) is uniformly non-singular for x • F,

i. e., the eigenvalues are bounded away from zero. However, the number of positive

and negative eigenvalues may differ from one boundary point to another. The analytic

boundary conditions can thus be expressed as

L(x)u(x,t) = 0 L(x)= (Q_(x) -s(x)QT,(x) ) (32)

Clearly, L(x) has full rank for every x • F. Strictly speaking, L(0,0) is not defined so

far, because the normal n(0, 0) is not well-defined. It will soon be shown how to define

L(0, 0), and we can formally consider L(x) as being defined for every x • F.

Let vii, i = O, v] j = O, u2 be a grid function. Define V T = (yT _)T ),

v T = (vToj... vTj). The discretized boundary conditions are written as

where

L_vj=O, i=O, ua, j=l,...,u2-1 and j=O, u2, i=O,...,u] (33)

L_= (0 ... 0 L(ihl,jh2) 0 ... 0 ) • R dl(i'j)x(va+l)d

with the non-zero element being the i th entry. At the origin we define

L(0,0)= (QT(0,0) -S(0,0)QT,(0,0))

where Q(0, 0) fulfills

QTAooQ = Ao0,
2 h2 hi

moo= n, = = -T'
i=,

(34)

The motive for defining L(0, 0) this way will be evident later. Furthermore, Aoo is sup-

posed to be non-singular. Let

b, 1

L0 = ( Lo0 ... L ,o) • Ed,(i,0)
i=0

ij _- ( Loj Lvl j ) • a (ul+i)dxs, , sj : E dl(i,j), j = 1,...,u2- 1

i=0,_'1
Vl

i=0
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The boundary conditions may thus be expressedas

Lo ) _2
LTv = O, L = ".. E R (v_+l)(_'2+l)dxs, s = E sj

L_ j=o

(35)

Obviously rank(L) = s, i. e., L has full rank. Hence, the corresponding boundary projec-

tion is well-defined, and is given by

P = I- E-1L(LTE-1L)-IL T

where

( aoI
".. , 21 -- ...

a_ E1 a,, 11

, I E R a×a

It is possible to simplify the expression for P in this case. We have

E-1L = ...

211L_,_/a, 2

But E_-ILj = LjHj, where

nj = (
I/ao

k

I / cro

Hi=

Hence

E -1L = LH,

Ho / ao

H=

Clearly, H is invertible. We therefore arrive at

P = I - LH(LTLH)-IL T

E R 8JxSJ j = l,...,u2_ l

ER _J×,J j=0, v2

E R sxs

= I- L(LTL)-'L T

i. e., P is independent of E.

The semi-discrete system can now be defined as

vt = P AiDiv + F

v(O) = f

(36)

It will next be shown that the solution to the system above satisfies an energy estimate.
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Proposition 4.1 Let (., ")h be given by (5) and suppose that D1 and D2 satisfy the con-

clusion of proposition 2.3. If P is defined by (10) and (35), then the solution of (36)

satisfies an energy estimate

il,,(t)ll_+/o' II,(_-)ll_-d_-_<Ke<_''(llilll +/o<IIF(T)II_d_-)

where the boundary energy I1 lit is given by (ua = u_ = v for convenience)

II,,(_-)11_= h_E <_J(1_o_1_+ I'_Jl_)+ h,E <_,(1",ol_+ I_,.I_)
j=0 i=0

Proof: ....

From propositions 2.5 and 2.4 we obtain

d 2

d-_Itvli _ = 2 _(v, Ad),v)h + 2(v, F)h
i=1

From proposition 2.3 and corollary 2.1 it follows that (v is only supported in a neighbor-

hood of (0,0))

1 lh 2 ojvTojAlVoj --_ (v,[Dl,nl]?2)h)

(v, AiDlv)h = 2
j=O

1 )(v, A2D2v)h = -7 h, _o_vTA2v,o + (v,[D2, A2lv)h
i=0

Thus, by lemma 2.3 we have

(D)_ aivioA2vio- h2 _ o'jvToja, voj + p([D,,a_]) + 1 I1"11_ + IIFII]
i=0 j=O _.

In the first sum the outward unit normal is n = (0,-1), and in the second n = (-1,0).

Except for the origin, the boundary terms are of exactly the same form as in the one-

dimensional case. Eqs. (30), (31) thus imply that

T T A '7io 2 '7io 12-vioA2vio = _o _o_Oio_< --_ _'o_ = --_[Voi , i >__1

and a similar inequality holds for the other terms. At the origin we get

3'00 2
-h_a.ovTooAivoo- haaovToA2voo = hao_ToAoo_oo _< -hao-5--I_oo l

But h > (ha + h2)/vr2. Hence

"700 3'00 2
-h2aovToAavoo- hiaovToA2voo <_ -h,oo_lvool 2- h2oo_lvool
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Since A(x) is uniformly non-singular it follows that 7 =-- inf(7oo/v_, 7io, 7oj) > 0. Because

of 7oo, the constant 7 will in general be smaller than the corresponding constant of the

analytic energy estimate. We thus arrive at

d_llvl[2 hd+ 2,lv[l_.< (_p([Di, Z,])+i=l 1),Iv[,_+ ]IFII_

which proves the proposition (K = max(I,2/7)). []

4.2 The Heat Equation

The analysis of a homogeneous Dirichlet condition is straightforward, even if the domain

of definition gt is non-trivial. The problem lies in discretizing the Neumann conditions

properly. This was clear in one space dimension. In two dimensions the occurrence of

corners certainly complicates the analysis. To gain insight we shall begin by looking at a

simple model problem.

The two-dimensional heat equation reads

ut=uXlXl+'U.x2.T2 xef_=(0,1) x(0,1)

u,,(x, t) = 0 x c r
u(x,O) = f(x)

where u,, is the normal derivative of u. Again, we focus our attention to a neighborhood

of (0, 0). The boundary conditions are discretized as

hi dokvkj = 0,
k=0

or, equivalently,

(DlV)o j = O,

j = O,...,r h--_ dokvik = O, i = O,...,r (37)
k=0

j = 0,...,r (D2v)i0 = 0, i =0,...,r (38)

where D1 and D2 are defined by proposition 2.3. The conditions above imply that two

boundary conditions are prescribed at the origin for the discrete problem. This approach is

natural from the intuitive point of view, in that gradients at the origin may be interpreted

as one-sided limits from the interior. For the time being we ignore this technicality. It

will later be shown how it can be overcome. When deriving the projection operator it is

convenient to cast the boundary conditions into yet a another form. Define the boundary

operators Llj and L2i through

where

LTjv -- (Dlv)o j = O, j = O,...,r

LT,= o. o o ...

L2T = ( doo T dot T-h-_ ... _ 0 ... 0 )

LTv-(D2v)_ o=0, i=0,...,r (39)

0
R'X(_'+')(n+'),j= 0,...,rE

E RlX(_'_+l)(_'_+l), i = 0,... ,r
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Here {ei} is the canonical basis in R _1+1 The boundary conditions can thus be written
in standard form

LTv = 0 L = ( L,o ... L1T L2o ... L2r ) E R 2(r+l)x("l+l)('2+l) (40)

We know that the corresponding projection operator is well-defined iff rank(L) = 2(r + 1).

Lemma 4.1 The columns of L (40) are linearly dependent. In particular, rank(L) <

2r+ 1.

Proof:

To investigate linear dependence we study

r ±ajLlj + /_jL2j = 0
j=0 j=0

which is equivalent to

_-_ (ajh2dok +/3khldoj) ek = O,
k=0

Since {ek} is an ortho-normal system it follows that

ajh_dok + _khldoj = O,

which obviously has the non-trivial solution

aj = doj

and the lemma is proved.

j _- 0,...,r

D

j,k = 0,...,r

h2

_j - hl doj, j = O, . . . , r

As a consequence of lemma 4.1 the projection formulation breaks down. If, however,

we change the boundary condition at the origin to

T
Lo×v _ ((1--x)LTo-I-XLTo)v=00<X__I (41)

and leave the boundary conditions at the remaining points unchanged we get a well-defined

projection operator, since

L = ( Lll ... L,T Lox L21 ... L2r ) C R 2_+1x(_''+1)(_'2+1) (42)

has full rank.

Lemma 4.2 The columns of L (42) are linearly independent. In particular, rank(L) =

2r+l.
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Proof:

Again we study

which is the same as

T

o_jLlj + 7Lox + _ _jL2j = 0
5=1 j=l

(h2 _kek + 7 (1 - X) dokek + X eo = 0
k=l k=O

h_ Zkek+_j_ dokek+7)/_e0=O j = 1,...,r
k=l k=O

The first component of the first equation yields 7(h2(1 - )/) +hlX)doo = 0. Since doo # 0

for any operator satisfying proposition 2.3, and since hi > 0, 0 _< )/ _< 1, necessarily

7 = 0. From the remaining components of the first equation we then obtain _j = 0,

j = 1,...,r, which in turn implies aj = 0, j = 1,...,r. The columns of L are thus

linearly independent, i. e., L has full rank. []

Before proceeding with the energy estimate, one more technical lemma is needed. Let

Lo×l and Lo×2 be defined by (41), and let

i-- ( Lll ... ilv iox 1 iox 2 521 ... L2v ) E a 2(r+l)×(vl+l)(_+l) (43)

Lemma 4.3 The columns of L (43) are linearly dependent. In particular, rank(L) _<

2r+l.

Proof:

Consider

c_jLlj + 71L0×1 + 72L0x2 + _ ZjL2j = 0
j=l j=l

Obviously the lemma is true for )/1 = )/2. In the following we thus assume X1 # )/2. The

equation above can be rewritten as

T r

E oljLl5 + __,j3jL2j = 0 (44)
j=0 j=0

where

(1_ 1 1 ,o
According to lemma 4.1, eq. (44) has the non-trivial solution

h2

_j=dos Zj- r-do,, j=O,...,r
nl

3O



whence

h2 \ o_j = doj

"Y2 -doo X, + _(1 X, /(X2 X,)

solves the original equation. The lemma is proved.

j=l_..._P

Proposition 4.2 Let P be given by proposition 2.5, where L is defined by (32).

LTo p = LTo P = O.

[]

Then

Proof:

Clearly, LTp = 0. Furthermore, Llo, L2o = Lo× for X = 0, 1, respectively. But then, by

lemma 4.3,

Llo = Lal L2o = La2

for some vectors al, a2 E R 2"+1. This proves the proposition. []

Remark: Suppose that v is a vector such that v = Pv, where P is as in the previous

proposition. Then Llov = L2ov = O, i. e., (D_v)oo = (D2v)oo = 0. In other words, by

requiring that the boundary condition at the origin hold for a specific convex combination

we actually get the stronger result (Dlv)00 = (D2v)oo = 0. Thus, we need not overspecify

at the corners, cf. eq. (37). In the appendix we give a direct proof that LTo P = 0 for L0×

with X = 0.5.

The semi-discrete heat equation is given by

vt= P(D 2 + D_)v (45)
v(O) = f

Proposition 4.3 Let (., ")h be given by (5) and suppose that D1 and D2 satisfy the con-

clusion of proposition 2.3. If P is defined by (10) and (42), then the solution of (45)

satisfies an energy estimate

IIv(t)llh <_Ilfllh

[]

Proof:

The energy method gives

d

d-/ll,ll : 2(v,D_v)h + 2(v,D_v)h

By proposition 2.3 (v is supported only in a neighborhood of the origin),

(v, D21v)h = -h2 _ ajVoj( D1V)oj - 1101 v]]_

j=O

According to propositions 2.4, 2.5 and 4.2 we have

(Dlv)oj = LTjv = 0, j = 0,...,r

The remaining term (v, D2v)h is treated similarly, and the proposition follows.
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4.3 Parabolic Systems

Consider

2

u,= _ AOu_,_:,+F, xEl2=(O, 1) x(O, 1), ucR a
i,j=l

u(x,0) =/(x), x = (Xa,X2)

Lo(x)u(x,t) + La(x)un(x,t)= O, x E F

(46)

The assumptions on L0, L1 in (17) are supposed to hold pointwise for each x E F. Fur-

thermore, we require that assumption 3.1 with A = A_ be valid on xi = 0, i = 1,2. In

particular, the conclusion of lemma 3.2 holds for each boundary point. It will be assumed

that (46) is strongly parabolic, i. e., there are vectors u_(x, t) E R d, i = 1,2, such that

2 2

u,(x,t)TAo(x,t)uj(x, t) >_ 25_ ludx,t)l 2
i.j=l i=1

for all x E f_, t > 0. If the matrices Aij ¢ 0, i _ j, then the assumptions must be

strengthened. The energy method applied to one of the cross terms yields (u is supported

only at the origin, A12 = const for simplicity, f_ is the unit square)

(u, A12u.i._)= - f_ urA12u_dx2-(u_i,A12u_)
1----0

In general we cannot get an estimate of u_ 2(0, x2, t) in the boundary integral. It is therefore

natural to require

Assumption 4.1 A T = Aij, i ¢ j.

Remark: Neglecting scaling factors we have

0 0 0 0 /

A12 = A21 = _1 0 0 1 0
p 0100

0000

for the Navier-Stokes equations (p denotes the density). Clearly, assumption 4.1 is fulfilled.

If assumption 4.1 holds one can integrate by parts once more to obtain

(u, A12u,,,2) = luT A12(O, O, t)u -- (u,l, A,2u_)

In two dimensions we cannot eliminate the boundary terms by means of Sobolev inequal-

ities, since they would involve L2-norms of u_l and so forth. This motivates
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Assumption 4.2

at the origin. Then

Let u( x, t) satisfy

Lo(O,O)u + L,(0,0)un =0

u TAij(O,O,t)u = O, i ¢ j

Remark: This assumption ensures an energy estimate for the continuous problem in

case of a non-smooth boundary, and couples the cross terms of the differential operator

to the boundary conditions at the origin. In case of the Navier-Stokes equations one has

zero velocity at the origin. Hence, the state vector becomes u T = ( p 0 0 p ), which

implies assumption 4.2.

The discrete boundary conditions are formulated as (D1 and D2 are defined by propo-

sition 2.3)

LTjv =--Lo(O,jh2)voj + Ll(O, jh2) (DlV)o j = O,

LTiv =- Lo(ihl, 0)Vio + Ll(ihl, 0) ( D2v)i 0 = 0,

(47)

where

( IT )Edok [ o... o
LTlj = 0 ... 0 Lo(O,jh2)eTo --_ Ll(O,jh2) ttl k=O

L2T.= ( (Lo(ihl,0)+L,(ihl,0)_)e T ... Ll(ih,,O)_-_2eT 0 ... O)

and eT = ( 0 ... 0 I 0 ... 0 ) E R dx(t''+l)d. The boundary conditions can be

expressed in the usual form as

LTv = 0 L-= ( 511 ... Llr Lox 52, ... L2r ) E R (2r+')d×O''+')(_+l)d (48)

where

Lo× =- (I - X)Llo + xL2o OGx<_l

Lemma 4.4 The columns of L (48) are linearly independent for sufficiently small step

lengths hi and h2. In particular, rank(L) = (2r + 1)d.

Proof:

Imitating the proof of lemma 4.2 gives

_[L°(O'O)+d°°( 1-Xh, "t- _22 ) il(O' O) ]
=0
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By lemma 3.2 the expressioninside the brackets is non-singular for hi, h_ sufficiently

small. Hence, 7 = 0, which in turn implies aj =/3j = 0, j = 1,..., r. Since the columns

of each block Llj, L2j and Lox are linearly independent, the lemma follows. []

The semi-discrete parabolic system reads

v(0) = f

where P is defined by proposition 2.5 and by (48). Unfortunately, assumption 4.2 is not

sufficient for the semi-discrete problem. We need

Assumption 4.3 Let v satisfy

Lo(0,0)Voo + La(0,0)((1 - x)(DlV)oo + x(D2v)oo) = 0

at the origin. Then

(0

(ii)

vTooAij(O,O,t)voo = O, i # j

v TooAll(O, O, t) = vToA22(O, O, t)

O_x_l

Remark: The first requirement is identical to that of assumption 4.2. The second,

however, appears only in the discrete case. We note that assumption 4.3 holds for the

Navier-Stokes equations, since All and A22 are given by

l0 000/ (0000)1 0 C 1 0 0 A22 = 1 0 1 0 0
All=p 0 0 1 0 p 0 0 C 1 0

--c2p/p 0 0 c2 --c2p/p 0 0 c2

Hence, vTooA11=vToA22=c2( _p2/p2 0 0 p/p ).

Proposition 4.4 Let (., ")h be given by (5) and suppose that D1 and D2 satisfy the con-

clusion of proposition 2.3. If P is defined by (10) and (48), and if assumptions 4.i and

4.3 hold, then the solution of (49) satisfies an energy estimate

34



Proof:
The energymethod gives

T T
-2 y_ h2 crkvokAlj(Djv)ok + h, y_ akvkoA2j(Djv)ko

j=l k=0 k=0
2

IID,vll , +(Ko + O(h))Ilvll , + IIFII ,
i=l

where Ko depends on II[D_,A,,]llh, i = 1,2 and p([Di, A,j]), i 7_ j. The first cross term

can be written as (v has compact support).

--h2 _--_O'kVTokA12(D2V)Ok-_- --h2 _ O'kVTkAI2 -_2
k=0 k=0 1=0

where vT = (vTo .. T•%,), and where 1)2 satisfies (1) with respect to the one-dimensional

scalar product (.,.)h_. Hence,

+llvo,
By assumption 4.3 the boundary terms vanish. The remaining cross term is treated in a

similar vein.

Next, we take care of the boundary terms corresponding to the pure second differences.

Only the origin needs to be analyzed, since the other boundary points are treated exactly

as in the proof of proposition 3.2• At the origin we get k

-h2_rovToAla (D1V)oo - hlO'ovTooA22( D2v)oo =
hi

-(h,+h_)crovTo((1-x)An(Dav)oo+xA22(D2v)oo), X- ha+h2

and, by assumption 4.3,

-h2crovToAn (D, v )oo - ha _rovroA22( D2v )oo =

-(ha q- h2)orovToA11 ((1 - x)(Dlv)oo -4- x(D2v)oo)

But v = Pv implies Loxv = 0, i. e., by (47)

Lo(0, 0)Voo + La (0, 0) ((1 - x)(DlV)oo + x(D2v)oo) = 0

In particular, LUvoo = 0. Partition v = v'+ v" where v_j E ker(L1/'), v_ E ker(L_) ±.

Assumption 3.1 then gives

-h2aovT A11( Dav)oo - hwovTooA22( D2v)oo =

-(ha + h2)crovTA11 ((1 - x)(Dav")oo + x(D2v")oo)
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By construction

Lo(0,0)v00+Ll(0,0)((1-_)(Dlv")00+X_ 2 )oo) 0

which can be solved in exactly the same way as the corresponding equation in the proof

of proposition 3.2. Hence,

-h2aovToAn ( D, V)oo - h_aovTooA22( D2v )oo = h_aovToAn L_ _Lovoo + h_o'ovToA22L[ 1 Lovoo

where we again have invoked assumption 4.3. We thus arrive at

d

d--_llvll2h -4-I]vll_ (2JA,,L_-' LoJ_,oo+ p([b2, A,2])+ I) h2 _ o_Ivokl_
k=O

?.

+ (21A2_LT'Lol,,oo + ?([b,,A2,])+ 1) h, _ _lvkol _
k=0

2

- 26_F_,IID,vlI_ + (Ko + O(h))II_II,_ + IIFII2
i=l

where Ivl,,oo = sup(Irk01)and 1,1_,oo--sup(I,0kl).Replacing p([Di,/i.ji]) by IA_il,,oo,i ¢ j,

one obtains the coefficients of the boundary terms of the analytic energy estimate. They
are thus identical if the coefficient matrices are constant or if we use the standard second

order method. Finally, the boundary terms of the right hand are eliminated by applying

the one-dimensional Sobolev inequality 2.6 in the xl- and x2-directions, respectively. This

proves the proposition. []

Remark: It is clear from the proof that (49) is strictly stable if the coefficient matrices

are constant, or if A T = Ail, i = 1,2 and the second-order method (3) is used.

4.4 Hyperbolic-Parabolic Systems

In this section we merely formulate the problem and state the main result. The reader is

asked to fill in the details. We consider the mixed hyperbolic-parabolic system

2 2

ut = Y_ Aiju_,_, + Y_ Clive, + F x E 12
i,j=l i=1

2 2

vt = __, Biv,:, + __, C2iu,:, + G u E R e_ , v C R _
i=1 i=1

L,(x)u.(x,t)+ Lo(x)u(x,t)+ M(x)v(x,t)=O x E F
:i(z,t) = s(x):.(x,t) + n(x)u(z,t) x • r

M(x)= (Ml(x) )0

u(x,0) = f(x)
v(x,O)=_(x)

(50)
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The structural hypotheseson the parabolic and hyperbolic parts of the principal operator
are identical to those in sections4.3 and 4.1. This remark alsopertains to the boundary
conditions. In particular, the characteristicvariables_I and _u are definedasin section
4.1• The principal operator is describedby the Ali'S and Bi's; the lower order coupling is

determined by the Cij's. Similarly, in the boundary conditions the coupling is expressed

by M and R.

Define w T = ( u T v T ) and let P be the projection corresponding to the boundary

conditions of (50)• The semi-discrete system is then defined as

wt = P AoDiDiw + _ hiDiw + ___ Ci[giw + F uo (51)
i,j=l i=l i=1 Wij _ Vi j

w(O) =_

where

( A_j(O,O,t) 0o o)
fftij =

( A_./(1, 1,t) 00 0)

(o o )o Bdo, o,t)

(o o )0 Bi(1,1,t)

0

( C2_(0,O,t)
C,_(o, O,t)o )

0

C2i(1,1,t) Cli(ldl,t) )

The forcing function F and the initial data _b are defined in a similar fashion•

Proposition 4.5 Let (.,.)h be given by (5) and suppose that D satisfies the conclusion

of proposition 2.1. Then the solution of (51) satisfies an energy estimate

llu(t)ltl+llv(t)l,1+£ (,lu(,-),,_-+ ll,(,)ll_-)_,

37



5 General Domains and Strict Stability

Nothing has been said about strict stability in two dimensions thus far. The purpose of

strict stability is to ensure the same growth rate of the discrete and analytic solutions.

If the analytic problem is defined on a curvilinear domain _, then there must exist a

diffeomorphism ( = _(x) of f_ onto the unit square (0, 1) × (0, 1) in order for the finite

difference method to be well-defined. Consequently, a constant coefficient problem in the

original domain may be transformed to a variable coefficient problem on the unit square,

which may account for a non-physical growth in the discrete estimate.

Let _ = _(x) be a diffeomorphism of 11 onto I = (0, 1) × (0, 1). The following identities

are readily established

Ox.__!l----j-1 0_2 Ox2 _ j-1 0_2
0_1 Ox: 0_1 Oxl

OXl __ j-1 0_1 Ox2 _ j-a (9_ 1

0(2 Ox: 0_2 Ozl

(0_) (52)J = det Oxx

which in turn implies
2

E (J-'<,) =o (sa)
i=1 {i

where 0 denotes the two-dimensional gradient operator. We require that ((x) be uniformly

non-singular, i. e., there exists a constant 6 > 0 such that j-1 >_ 6 on gt, For later use we

record the normal and tangential derivatives u,_, and u,, at the boundaries corresponding

to_i=0, i=l,2:

i=1,2 j#i (54)

u,, = (-1)'u¢,/Iz_,l

u,_,= -(0_, . o_,u_,+ 0_ . O_ju_,)llO_,l

where the boundary F of the domain f_ has been parametrized in the positive direction.

The analytic scalar product obeys

(u,v) = £ uT(x)v(x)d:r = f uT(x(_))v(x(())J-ld_

which suggests the following semi-discrete scalar product

(55)(U,V)h = (U,J-lv)h = (J-iu, v)h

where the last equality follows since j-1 and ]E are diagonal. Thus, each grid point is scaled

with the cell volume. Similarly, the analytic boundary integrals can be parametrized as

it, uT(z)v(x)& = L 'uT(x((''O))v(x(_''O))lxe'(_''O)ld_'

38



Hence, it is natural to define the boundary scalar product as

(56)

where the arc lengths are defined as

Soj = Ix_2(O,jh2)]h2 S,o = [x¢,(ihl,0)lhl h, = A_I, h2 = A_2

with similar definitions for s_j and si,.

In order to prove stability we must have Pv = v. Since v will be the solution of

equations like (60), proposition 2.4 implies that P J-iv = J-iv. Therefore, it is natural

to require

p j-1 = j-1p (57)

For a general P this identity expresses a compatibility condition between the analytic

boundary conditions and the mapping ((x). Let P be given by (10) and (42). Then (57)

certainly holds if

J_j = J(x(ih_,jh2)) = J_0, j = 0,...,r (58)
J_j - J(x(ih_,jh2)) = J0j, i = 0,... ,r

which states that the mapping _(x) is locally isochoric in the x¢,-direction at the boundary,

where a/0(i is the non-tangential derivative. In case of characteristic boundary conditions

and Dirichlet conditions we have r = 0, and (58) is trivially satisfied. For general bound-

ary conditions, however, (58) couples the boundary operator to the grid transformation

(cf. assumption 4.3, which links the differential operator to the boundary operator).

5.1 Symmetric Hyperbolic Systems

Using (53) we recast (29) into a form that eliminates the need for the commutator in the
semi-discrete case.

(j_,u)t = __,=ll_-_ ((j_lBiu) _, -_- j-1Uiu_, ) - -_l j-ldiv(A)u + J-1F (39)

where
aA1 aA2

0_ A 0_ A div(A) 0 A +--
Bi = 0_. A = _-_xl,-q +--_2 = • = --Oz2 Oxl Ox:

The boundary conditions are as in (29), except at the origin, where we require that

the characteristic boundary conditions _i(0, t) = S(O)_II(O, t) be satisfied for c2(0 , t) =

QT(O)u(O,t), i = 1,2, where QT(O)Ai(O,t)Qi(O) are diagonal, which means that two

boundary conditions are prescribed at the corner. This situation occurs for the Euler

equations at corners, where it is natural to require that both normal components of the

velocity field be zero. Furthermore, this assumption simplifies the computations that
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follow. The projection operator is still well-defined. It should be pointed out that tile
boundary condition at the origin is only usedfor the semi-discretesystem.

Eq. (59) is discretizedas

i=1

with

div(A)(x(O,O),t) )
C _ "..

div(A)(x(1,1),t)

Proposition 5.1 The approximation (60) is strictly stable.

Proof:

The energy method yields (using P(J-lv) = J-iv, p j-1 = j-IF ==_ Pv = v)

2

d (v, V)h = _ ((v, DiJ -1Biv)h + (v, j-1 siniv)h) _ (v, j-1 Cy)h "_-2(V, j-1F)h
i----1

But (using B_(O, jh2) instead of Bi(x(O,jh2),t) and so forth to make the notation less

cumbersome)

v

(v, nlJ -1Blv)h = -h2 _ ajv_.J-l(O, jha)B_(O,jh2)voj - (nlv, J-_ Blv)h
j=O

Since diagonal scalar products are used, assumption 2.1 holds a fortiori. Hence, (B1T =

B1)
(Dlv, J-1Blv)h = (B1g-lDlv, V)h = (J-1B1Dlv, V)h

where the last equality follows since B1 and j-1 commute. Thus,

v

(v, n_J -1B,v)h = -h2 _ ajvTojJ-i(O,jh2)B,(O,jh2)voj - (a-i B1D, v, v)h
j=O

with a similar relation for (v, D2J-1B2v)h. We thus arrive at

t/

d (v,v)h < -h_ _ ajVTojg-l(O,jh_)Bl(O,jh2)voj
j=O

12

-hl _ a, vT j-_(ihl, O)B2(ih_, O)vio
i----O

+(Idiv(A)[o_ + 1)(v,v)h + (F,F)h
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By means of (52) it follows that

J-l B 1 _
OX2 OXl ,

- O_-_A1- -_A_

Apparently, x_2 is a tangent vector of the curve x(0, _2). Hence

( Ox_ Oxl )O& O&

is an outward normal to x(0, _2) G F. The unit normal is then defined as

( Ox2 Oxl )

Using the definition of the arc length we then obtain

-h2 °jVTojJ-l(O, jh2)B'(O, jh2)voj = E °JSojVo T (nlA1 + n2A:)Voj
j=o j=o

The boundary conditions are satisfied, whence

v_ (n,A, + ,_:m2),)oj< -'TjlVojl_

Letting 3' _= inf(Tj) > 0 implies

1/ p

-h2 _ ajVTojJ-l(O,jh2)Bl(O,jh2)voj <_ -'7 _ ajSojiVoj] 2
j=O j=O

We have thus established

d

--_(V,'U)h n t- '7(V,V)F __ (Idiv(A)lo_ + 1)(v,v)h + (F,F)h

This is exactly the same estimate that one would get in the analytic case, and the propo-

sition has been proved. []

5.2 The Heat Equation

The heat equation in self-adjoint form reads

(J-1/z)t _-_ (J-l_@i (j=_l c_J _

_k

(61)
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At the boundary the normal derivative is set to zero. Define

Mij =

O_J(x(1,1))
axi

/
and

2

[_ = Z M_jDj
j=l

Clearly,/)i is a consistent approximation of O/Oxi. Let

(_1 " 0_2 L2o

Lo,_2 = -lO_2lL2o Llo

(62)

be approximations of the normal derivatives at the origin. The boundary projection P is

defined by (10) and (42) with Lox replaced by either of L0,_, and L0,_.

It should be noted that P may no longer be unconditionally well-defined. Arguing

exactly as in the proof of lemma 4.2 one obtains (using Lo× = Lonl)

-- (104112h2 + 041, O_2hl) "[ = 0

If 0_a • 042 < 0, i. e., at acute corners there is a possibility of a non-zero 7 if

h2 - 041" 042hl (63)

Hence, at acute corners we assume that hi and h2 be such that (63) does not hold•

Furthermore, lemma 4.3 is valid for Lo×_ = Lo,_, Lo×_ = Lon2. This is obvious if 0_1" 0_2 =

+t0411]042], because then Lo,_l = 4-Lo,_. Otherwise, we obtain (44) where

0(a" 042
]0411 ]0_el

0h. 0_ 10_l
104_1

which has a unique solution iff 104," 0_21 < ]0(ll]0_l.

The semi-discrete heat equation is now defined as

(j-iv),-_ P E Ok J-1iik iijnjy

i,k=l j=l

(64)
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Proposition 5.2 Assume that the mapping _(f_) = I is locally isochoric at the boundary

in the sense of (58), and that the grid is orthogonal at the boundaries except at the corners.

Then (6_,) is strictly stable.

Proof:

Since the transformation is locally isochoric at the boundary we get Pv = v. Thus, the

energy method implies

d 2

--_(v,v)h = 2 y_ (v, DkJ-1MikDiV)h
i,k=l

Summation by parts yields (v is assumed to have compact support)

V 12 ~

i=1 L=O i=1 /=0
2

--2 _ (MikDkv, J-1DiV)h
i,k=l

Obviously,
2 2

__, (MikDkv, J-1Div)h = Y_(Div, DiV}h
i,k=l i=1

Next we turn our attention to the boundary terms. We have

(E( g_l Mil biV )ol : g_lll lO_l lOi iO_l lo,( Da v )oz + (0_2 0_2)Ot(D2v)0z]
i=1 10_l lot /

The parenthetical expression is recognized as a discretization of the normal derivative

(cf. (54)). The other boundary is treated analogously. At (1 = 0 we thus define a "normal

difference" operator /),_1 through

(0_1.0_:)o,)(D.lv)0t=-tO_,lo,(DlV)O_+ _-(_ (D2v)ot

with a similar definition of/),_: at ,_2 = 0.

Hence,
d 2

_(v,v}h = 2(v,b,_v)r -- 2_(D,v,D,V}h
i=1

Using v = Pv and the orthogonality assumptions it follows that

(D,,,v)og= -IO_,lotLrv = o (Dn_v),o= -IO_:l,oL_v = 0

From (52)it follows that J_'lO_l = Ix_,l.

l>0

At the origin we have

(D,_,v)oo= LTnlv=O (b,_v)00 = LT,_v = 0
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where LoT,_,v vanishes because of the construction of P; LTo,_2v disappears since we have

shown that L0,_2 belongs to the column space of P (of. proposition 4.2). Hence the

boundary sum is identically zero, which proves the proposition. []

Remark: It would still be possible to prove strict stability, even if the grid were not

orthogonal at the boundary. To compensate for the loss of orthogonality it is necessary

to require that the grid be globally isochoric in a neighborhood of the boundary F.

5.3 General Parabolic Systems

When considering parabolic equations in general, tangential derivatives may appear in the

boundary integrals, potentially calling for integration by parts once more. The occurrence

of tangential derivatives depends on the coefficients of the original equation, the geometry,

and the presence of mixed derivatives. These criteria are not independent of one another.

The following simple example will illustrate this interdependence. Consider the parabolic

model equation

ut = ux,_l + u_1_2 + u_2x2 x C f_ (65)

where f_ is diffeomorphic to the unit square; the boundary conditions are yet to be spec-

ified. The energy method gives (the cross term is integrated with respect to xa)

d [2 /r /ad-illu I = 2 (uu,_ + nluu_)ds - 2 (u_lu_= ` + u_u_:_ + u_:_ux_)dx

The normal and tangential derivatives are defined as

0 0 0

On - nl Ox-----_+ n20z2

0 0 0

Or - rl Oz---_l+ r20z2

0 0 0

Oz l - n l -g-£_+ rl -g-_

0 0 0

Oz2 - n2-_n + r2-g-;_

where n is the outward unit normal as usual; the unit tangential r is chosen corresponding

to a positive orientation of r. Thus

"rl = -n2 (66)
7"2 = nl

If, on the other hand, tim cross term is integrated with respect to x2, we obtain

We must show that

[F nl uux2ds "= fF n2UU_l dS (67)
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in order for the energy method to be well-defined. Using the definitions above gives

fFn, uu_:2ds=fF(nln2uun+n17-2uu_)ds

j[Fn2uuxldS=fF(nln2uun+n2riuur)ds

Clearly, (67) will follow iff

Jr nl T2uu_ds = Jr n2Tl uurds

From(66)and n_+ n_= 1 it followsimmediatelythat

f n,._uu.ds = f n2.luu.d_ - f_ uurds

Note that the second integral of the right hand side would vanish identically if F were

smooth. To simplify the analysis it will be supposed that u is supported only in a neigh-

borhood of the lower left corner. Hence, it will be sufficient to consider the boundary

portions F1 and F2 corresponding to _1 = 0 and _2 = 0. Parametrizing F in the positive

direction gives (cf. (54))

1 o 1Li(u2)¢ld_'fr_¢d_ = T f_ -(u_),_d_ + 7

--_ -_2 in the first integral of the right member gives (0/0(2 --_ -0/0_2,

L If 1L1_d_ = 7 (_:)_:d_: + 7 (_:)¢,d_ = 0

and (67) follows. The energy method is thus well-defined, and we have

_llull' _<2St((1+n,,,,),,,,o+,m,,,.)d.-(llu:,ll: + Ilux,ll')

The quantity n_ is discontinuous at the corners. Define the jump discontinuity

[.1_](_)= _,_(_)- _,_(_)

where n_R(x ) and n_L(X ) are the left and right limits of n_ at x (according to the positive

orientation of F). Straightforward computations show that

fr 4 if r1Z[n_](_.),,_(x_,t) _ 7 (,_).,,_d._

where x_i, i = 1,... ,4 are the corner points. Thus,

i1_11_< E[nil(_:,)u_+ (2(1 + n,n2)uu_ -(n_)ru 2) ds- (]lu_, ]l2 + ].u_:]. 2)
i----1
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From this inequality it is obvious that giving Dirichlet data at the corners and Neumann

data at the remaining boundaries would yield an energy estimate. In fact, we could even

allow inhomogeneous Dirichlet data at the corners and still obtain an energy estimate in

terms of the data. The effect of the corners disappears ill" [n_](x) = 0, which happens if[

(i) niL(X) = niR(x)

(ii) nIL(X)=--nin(x)

The first case implies that the normal is continuous, i. e., x is not a corner point. The

second case is more interesting, since the normal is discontinuous, but the effect on the

energy estimate disappears. This illustrates how the geometry can interact with the cross

terms. The simplest example is obtained by solving (65) on _ being the square with (1,0),

(0, 1), (-1,0), and (0,-1) as vertices. Evidently, the second case holds at the corners,

and no corner values should appear in the energy estimate. This can also be seen by a

change of coordinates:
1 1

_1 = _12 X l "Jl- -'_ x 2

=
Eq. (65) is then transformed into

3 1 1 1 1 1

The cross term has vanished; instead the equation has become anisotropic. Working in

this coordinate system it is apparent that no tangential derivatives -- and consequently

no point values -- will appear when deriving the energy estimate.

To solve (65) by means of finite difference methods it is rewritten in self-adjoint form:

2 2

(k) (k)_ OG Y_'_(-1) z [n(k)n(k)u "_ (68)(,J-l_)t : Z (J-1 (l-t-hi n2 ) "Oi/,)<k-t- It 1 l <']<k

k=, k_l

where n (k) = --0_k/10_kl. This equation is discretized in space the usual way. The cross

terms

(-1)l[ (k) (k)
t,nl nl u_]_

must be integrated twice to eliminate the tangential derivatives. In the semi-discrete case

this amounts to performing summation by parts twice, the second of which will require the

introduction of a commutator, thereby obliterating strict stability (except for the second

order accurate difference operator). To restore strict stability it would be tempting to

reformulate the critical terms in skew-symmetric form:

(k) (k) 1 [ (k)n(k)u" _ l n(k)n_k)u_, 1 {n(k)n(k)'_
nl nl lZ(I----7 t'nl 1 )(1 +7 ' --7 I 1 1 ](1 tl
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Doing so,however,would introduce lower order energyterms (,)h, whosepresencewould
destroy strict stability. The simplestway to resolvethis ambiguity is to assumehomoge-
neousDirichlet data, in which casethe boundary terms vanish identically, and (68) would
be the preferredchoice.The choiceof homogeneousDirichlet data to eliminate the influ-
enceof the mixed derivativesarisesnaturally when solving the Navier-Stokesequations,
sinceat solid boundarieswehavezerovelocity, and sincethe crossterms involveonly the
velocity components.

We nowturn to generalparabolicsystemssubject to homogeneousDirichlet conditions.
For generaldomains fl eq. (46) is written as

(J-lu) E g-1= ----_iju_ - __, J-ldiv(Aj)ux,
t Oxi

i,j,k=l (k j=l

u(x, o) = f(x)
_(x, t) = 0

where div(Aj) = (A,j)x, + (A2j)_2. Define Cj = div(Aj).

then given by

+ J-1F xEf_

(69)

xEF

The semi-discrete system is

(± 2 )(J-lv)t = P DkJ -1M, kA_jDjv - __, j-1cjDjv + J-IF
i,j,k=l j=l

The projection operator P represents the homogeneous Dirichlet conditions.

(70)

Proposition 5.3 The approximation (70) is strictly stable.

Proof:

Left to the reader []

6 Inhomogeneous Boundary Conditions

The principle for handling inhomogeneous boundary data is best illustrated by means of

a simple example. Consider the one-dimensional advection equation

ut + u_: = 0

u(x,O) = f(x)

u(0,t) =g(t)

• e (o,_)
(71)

The corresponding semi-discrete system reads

vt + PDv = (I - P)[h

v(O) = f
e __

0

1

°.°

1
g)gl

g_

(72)
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wheregj, j = 1,..., u are to be determined later. Obviously, vo(t) = g(t) if fo = g(0)

(cf. proposition 2.4). The boundary condition is thus fulfilled at all time. According to

proposition 2.4 one has v = By+ (I- P)[l¢:=_ (I- P)(v-[7)= 0. Hence, the energy

method gives
d

_llvll_ = -2(v- (I- P)_,Dv)h + 2(v, (I -- P)[Tt)h

Subtracting 2(0, ?)t)h from both sides we get

2(v - ._, vt)h = -2(v - _, Dv)h -- 2(.0, vt + PDv - (I - P)[h)h + 2(v - [7, ( I - P)[_t)h

Using (72) and (I - P)(v - g) = 0 shows that

2(v - g, vt)h = -2(v - g, Dv)h

i.e.,

2(v - _, (v - O)t)h = --2(v-[hD(v-O))h -- 2(v-[7,[Tt + D[7)h

If __solves the auxiliary problem

then

gt + D_ = 0

9(0) = f

d
_llv - 011_,= -2(v - [7,D(v - _))h = (vo - g) 2 - (vv - g_,)2 _< 0

since v0 = g. Thus,

Consequently,

IIv(t)- O(t)llh_<IIv(O)- s_(O)tlh= o

_(t) = _(t), t >__0

If _ satisfies (73) we get the energy estimate

(73)

d 2

d--711011_= -2(.q, D_l)h = g2 _ g_

Hence,

Finally, v =g implies

II_(t)ll_,+ fo' g_(_)d_ t= Ilfll_+ g_(_-)dT

II_(t)ll_,+/o'V_(¢)d, = IlSll_+ fo'g:(¢)d¢

which is identical to the continuous estimate.

It remains to be verified under what circumstances _ solves the auxiliary problem (73).

Let .O = ( go gl ..- g_ )T be the solution to (73). Hence

DJO(O)=DJf j=0,1,...
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and
0J1)
Ot----J+ (-1)/+I DJ1) = 0, t _> 0,

i.e., for t = 0 we get the compatibility conditions

j =0,1,...

oJ1)(0) +(-1)J+lDJf=o, j -- 0,1,...

Thus, if we require that the initial-boundary data f and g satisfy

OJg I
op(O)+ (DJf)o = 0, j =0,1,...

it follows that
OJg OJgo

Otj (O) - OtJ (0) j = O, 1, . . .

By virtue of being the solution to (73) go(t) is analytic in t. Hence, taking the boundary

data g(t) to be analytic these equalities imply that g(t) = go(t), t > O, i.e., !) = 1), which

proves that _ indeed solves (73).

In what follows we shall analyze the general case. Consider the ODE-system

(J-iv), = PR(t, v)+(I- P)(j-lg) t

v(O) = f

with j-a being the inverse Jacobian, and where

(74)

R(t,v)=G(t,v)+ J-_F(t), G(t,O)=O

This form arises naturally when discretizing a non-linear PDE in space; _ represents the

boundary data, and F is the forcing function; G(t, v) is the discretization of the differen-

tial operator. It should be pointed out that most operators G occurring in practice are

autonomous, i. e., G = G(v). We use the tilde notation to emphasize that .q is only par-

tially determined, that is, some components are determined by the boundary data of the

underlying PDE; the remaining components are unknown. It is no restriction to assume

that _ = ( g0 ... g_ )T with g_, i = 0,...,s being the known components. Otherwise,

could be brought to this form by permuting the dependent variables appropriately. As

usual we require that P and j-1 commute, which is true if the grid is locally isochoric at

the boundary. Next, we define the auxiliary problem

= R(t,w) (75)
w(O)= f

Any solution to (75) will satisfy

dJ
(J-lw) = Rj(t,w), j=O, 1,
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where Rj is defined recursively by

Rj(t, w)- ORj_I(t, w)+ ORj_,

Ro(t,_) = _

Consequently, at t = 0 we have

d j
(g-lw) (0) --- Rj(O,f)

--(t, w)R(t, w), j= 1,2,...

j = 0,1,...

Assumption 6.1 The boundary data g+(t), i = 0,..., s, the initial data f, and the forcing

function F satisfy the compatibility conditions

dj

(J-l_),(O)=(Rj(O,f)),, i = 0,...,s, j = 0,1,...

If R is sufficiently well-behaved, in particular if G is linear and autonomous, then w(t) will

be analytic for 0 < t < T. Thus, if we require that the boundary data g+(t), i = 0,..., s,

be analytic it follows that

g,(t) = w+(t), i = o,...s

Furthermore, the unknown components gi, i > s are of course taken to be

g+(t)= w+(t), i >,

Hence, .q = w solves (75).

Remark: It suffices to consider g+ piecewise analytic, since the process can be repeated

at t = tl, where tl is the critical time when analyticity is lost.

Proposition 6.1 Let v be the solution to (74) and suppose that assumption 6.1 holds. If

the boundary data gi, i = O,...,s are piecewise analytic, then

(v - [7, (v - _)t)t+ = (v - [7, a(t, v) - G(t,[7))h

Proof:

Using (74) and Pv = v - (I - P)[7, which is true since P and j-1 commute, it follows

readily that

Hence,

(v, Vt)h = (v -- {7, R(t, v) )h + ([7, PR(t, v) )h + (v, ( I - P)( J-i[7)t)_

(v - g, vt}h = (v- g,R(t,v))h + ([7,-(J-lv)t + PR(t,v))h + (v, (I- P)(d-l_)t)h
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or, using (74),

(v - {7,Vt)h = (v -- [7, R(t, v) )_ + (v - _, (I - P)( J-l_)t)h

But

and so

(v- _,(I- P)(J-'{7)t)_ = ((I- P)(v-g), (J-'g)t)h = 0

(v - i7, = (v - R(t,

which in turn is equivalent to

(v - _,(v - {7)t)h = (v - {7, R(t, v) - R(t,_))_ - (v - _, (j-l_)__ R(t,_))h

The assumptions on _ imply that (J-Ig)t = R(t,g), which proves the proposition. []

6.1 One-Dimensional Parabolic Systems

We consider the parabolic system (27) with the lower order terms omitted, i. e.,

ut = (Aux)_: + F

u(x, O) = f

Lou(O,t) + Laux(O,t) = g(t)
g(t)= (gI(t) )0 (76)

The omission of lower order terms is done for convenience only. The boundary data g(t)

is assumed to be piecewise analytic in t. The corresponding semi-discrete system reads

vt= P(DADv + F) + (I- P){Tt (77)
v(O) = f

where _ satisfies LT_ = g, with L given by (18). According to proposition 2.4 we have

(I- P)(v- {7)or, equivalently, LTv = LTO. Thus

Lovo + Ll(Dv)o = g

which shows that the analytic boundary conditions are satisfied to some order of accuracy.

Proposition 6.2 Suppose that assumption 6.1 holds. Then (77) is strictly stable.

Proof:

We know that _ solves the auxiliary problem

9t = G(t,9) + F(t)

0(0) = f
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whereG(t,.0) = DAD[7. Proposition 6.1 then yields (using J = I)

(v - [7, (v - [7)t)h = (v - [7, DAD(v - g))h < -(Vo - go) T A(D(v - [I))o - 251ID(v - _)11_

Since LT(v -- _) = 0 it follows that

L'o'(vo- go) =0

Furthermore, decompose vj - gj = (v_. - g_) + (v_' - g_'), where v_,g_ C ker(L[), v_',g_' E

ker(L_) ±. According to assumption 3.1 we then obtain

(v - _, (v - [7)t)h < -(Vo - go) T A( D(v" - .q"))o - 2511D(v - g)lt_

Arguing exactly as in the proof of proposition 3.2 gives

( D(v" - _") )o = -El 1 Lo(vo - go)

i, e._

(v - _, (v - _)t)h _ _lVo-- gol=-- 2611D(v- _)112

By means of the Sobolev inequality 2.6 we thus arrive at

(v - iT,(v - _),)h <_(o_+ O(h))llv - _llZ

Hence

IIv(t)- _(t)llh _<g_+°(hl)*llv(0)- _(0)llh= 0

which is equivalent to v(t) = [7(t), t >_ O. To get the final estimate we consider the

auxiliary problem. One obtains

d

d-_llgll_, < -2gTA(Dg")o- 4511D011_, + II011_ + Ilfll_

Now

and so

Thus

Logo + LI(D{/')o = g

(D[/')o = -L_l Logo + L(l g

T ~H

-2g o A(Dg )o = 2gTAL-{1Logo- 2gToALT'g <_ _lgol_+ Igl=

where the algebraic inequality 2xy < ex _ + e-ly 2 was used. This leads to

d

d-_ll_ll_+ Igol_ _<(_ + 1)lgol_ -4_IID_II_,+ I1_11_+ Igl_+ IIFIl_

The coefficients of this estimate are exactly the same as those of the corresponding analytic

inequality. Using ._ = v and eliminating the boundary terms of the right member by means

of the Sobolev inequality yields

d

d-_llvll_, + Iv01_ <__(a + O(h))llvll_ + Igl _ + Ilrll_
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wherea is the same constant as in the analytic estimate. Finally, integration with respect

to time results in

llvjl +/0' (ll ll +/0 +
which is the desired estimate. []

Remark: The boundary conditions are used twice -- first in conjunction with propo-

sition 6.1 to show that _ = v, and second with the auxiliary problem to get the actual

estimate.

6.2 Two-Dimensional Symmetric Hyperbolic Systems

We consider (the lower order terms are omitted for convenience)

1 k((g-lBiu)( -t-,]-IBiuh,)-t-J-1F (78)
(J-lu)_ -- 2i=1

where

B_ = O_i • A -

The boundary conditions are given by

O(i O(i A2
- Ox--_lA1 + Ox2

_(x,t) = s(x)_.(z,t) + g(x,t)

where _I designates the characteristic variables corresponding to the locally ingoing char-

acteristics; S(x) is assumed to be sufficiently small. At the corner x(0,0) we require

that

q_l(x(O,O),t) = S(x(O,O))qOil(x(O,O),t) + g(x(O,O),t), qp(x(O,O),t) = QTu(x(O,O),t)

be satisfied for i 1 2, where "_r' (i)A (x(O,O),t)+n_i)A2(x(O,O),t)Q_ are diagonal; n(i),= , ['_i (nl 1'tl

i = 1,2 are the two normals associated with the corner x(0, 0).

At each discrete boundary point x 0 = x(ihl,jh2) E I" the boundary conditions are

formulated as

L(x_j)v,j = g(xo,t), xij E F

where L(x_j) is given by (32). We note that there are two operators L_(zoo) corresponding

to the two different normals n (0 at x00. Since L(xij) has full rank it follows that there

exists a gij such that

L(xij)Oij = g(zij,t), xij C F

Hence, the boundary conditions are

L(xo)(vo - go) = O, xij C F
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or, in global form,

=o

where _ is partially determined by the boundary data. Eq. (78) is discretized as

)(J-lv) : P E ( oiJ-1Biv -_ J-lj_iDiy) -_- j-1F "_- (I- P)(j-lg) t (79)
t i=1

= I

where P is the orthogonal projection corresponding to the global operator L T.

Proposition 6.3 Suppose that assumption 6.1 holds. Then (79) is strictly stable.

Proof:

By assumption 6.1 _ solves the auxiliary problem

where

(J-'O) , = G(t,[l) + J-' F(t)

1 2

G(t,_) = _--_ (DiJ-1B,[7 + J-lBiDi_)
i=1

Hence, according to proposition 6.1 we have

1

<v - 0, (v - g),>h =

Summation by parts yields

2

___(v-O,(DiJ-'Bi+ J-1B, D_) (v--{l))h
i=1

1

(v - _,(v - 0),>h = -_(v - [l,(n,A, + n2A2) (v - #)}r

But LT(v -- _) = 0, whence v - # satisfies the homogeneous boundary conditions. Conse-

quently, (cf. the proofs of propositions 3.1, 4.1, 5.1)

(v - {7, (nlA1 + n2A2) (v - [7))r < -"/]v - [71_ < 0

Thus, 9(t) = v(t), t >_ 0.

In the second part of the proof we apply the energy method to the auxiliary problem.

Straightforward computations show that

d

d--_{[7,[7)h = (g,(nlA] -F n2A2)#>r + 2{#, F>h

Take an arbitrary point Xoj on the boundary portion where _1 = 0. We must analyze the

quadratic form

g0_ (nl 1)A1 -_- n_l)A2)0j Oo/
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We know that LT{7 = g, where g is the vector representing the analytic boundary data.

Define _olj = QT(xij)_Tij. Hence,

(_,j)1 = S(x_j)(_,j)i1 + g,_ (s0)

and the quadratic form is transformed into

T

go_ (n_l)A1 + n_')A2)oj{7oJ : _ojAoj_oJ

Using (80) gives (omitting the spatial subscripts for simplicity)

It is assumed that AII _< -'/at x0j. For sufficiently small S we thus get

"/ =
_rA_ _<-_1_-I + (1 + la11)lul_

Now, ]_,1 -< ISI]_HI + 191. Hence

"/ 7 7 IAtl) lgl = < (3 IA,I) lgl =v ra_ + _ Iv[_-<--Iv'l=4 + 4 I_°11=+ (1+ _ +

for 5' small enough. It should be underscored that this is exactly the same estimate one

gets in the continuous case. At each boundary point x0j we have thus established that

(I) ~ . "/Oj ~ 2

9_ (np)A1 + n2 A2)ojgOa + --_-Igojl <- (3 + ](A0j),])]9oj] 2

with a similar expression at points Xio corresponding to _2 = 0. Letting inf('/ij) -- 7 > 0

we thus obtain

d -/
d-/(_,_)h + g(_,._)r < (3 + IAI_)(g,g)r + 2(_, V)h

Finally, identifying v = ._, integration gives the energy estimate

/o' ( Jo'(v(t),v(t)>h + (v(r),v(r)}rdr <_ Ke' (f,f)h +

which proves the theorem.

((g(r),g(r)}r + (F(r),F(r)}h)dr)

o

Remark: Because of the terms _TISTAlg +gTAIg the constant K of the energy estimate

will in general satisfy K > 1, even if no estimate of the boundary terms (v, v}r is wanted.

For g = 0, i. e., homogeneous boundary conditions, the critical terms disappear, and one

may take K = 1 in case no boundary estimate is needed (cf. the remark following the

proof of proposition 3.1).
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7 Summary and Conclusions

We have demonstrated that for a given finite-dimensional scalar product (., ")h any linear

discretized boundary condition can be written as an orthogonal projection operator P that

satisfies (u, Pv)h = (Pu, V)h. It should be noted that the projection is well-defined if the

corresponding analytic problem is well-posed. For general boundary conditions one may

also have to require that the discretization parameter h be small enough (consistency).

The projections P , the summation-by-parts property, and proposition 2.4 constitute the

main tools needed to obtain an energy estimate for the semi-discrete case. For a large

class of problems it has been established that existence of an energy estimate for the

continuous problem implies ditto for the semi-discrete system.

In one space dimension we are no longer required to consider restricted full norms

1 )_2(1)

1

which were used in [4] to prove stability for symmetric hyperbolic systems subject to

homogeneous boundary conditions. The main result is the stability proof for mixed

hyperbolic-parabolic systems subject to general linear boundary conditions. Assuming

certain compatibility conditions the result holds for inhomogeneous boundary data. Re-

formulating the analytic problem it is possible to obtain strict stability, i. e., we have

a time stable semi-discrete approximation that is bounded by the the same exponential

growth rate (modulo O(h)) as the analytic problem. For the parabolic part the excess

growth rate is induced by the discrete Sobolev inequality. Furthermore, for the hyperbolic

part we have used assumption 2.1. In particular, strict stability is obtained for diagonal

norms and variable coefficient problems, and for general norms and constant coefficient

problems. The stability results hold for finite difference approximations of arbitrary order.

In two space dimensions we are forced to consider diagonal norms in order to get

summation by parts in both dimensions. Stability of high-order schemes is obtained for

general mixed hyperbolic-parabolic initial-boundary value problems. Again, inhomoge-

neous boundary conditions are allowed, provided certain compatibility conditions prevail.

Using a different norm we obtain strict stability for symmetric hyperbolic systems on

non-smooth curvilinear domains, where we allow for general inhomogeneous boundary

conditions. As for strict stability of parabolic systems, we are limited to homogeneous

Dirichlet data. Mixed derivatives and/or variable geometry may account for "tangential

differences" that in general cannot be eliminated without ruining strict stability. An ex-

ception is the standard second order method. The requirement that the Dirichlet data

be homogeneous is already necessary for the continuous problem. All results obtained for

two dimensions generalize to higher dimensions.

The methods presented in this report are similar to finite element methods in that
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stability for the semi-discretesystemfollowsmoreor lessdirectly from the corresponding
continuousone. Thereis, however,onemajor difference:The FEM techniqueoften results
in implicit spacediscretization,whereasthe discretizedspaceoperators reported in this
paper alwaysare explicit.

There are other waysof imposing boundary conditions so as to ensuretime stability
(strict stability) when using differenceoperators satisfying a summation-by-parts prop-
erty. An elegant techniqueis proposedin [1]. A so called SimultaneousApproximation
Term,SAT for short, is addedto the semi-discretescheme.The SAT will act asa penalty
function to enforce an approximation of the discrete boundary conditions. In [1] this

approach is used to prove time stability for high-order finite difference approximations

of one-dimensional constant coefficient hyperbolic systems. Also, it is not necessary to

consider identical difference stencils in the interior. A new and interesting class of such

difference operators can be found in [2].

Acknowledgment

The author wishes to thank Prof. Joseph Oliger for many stimulating discussions on the

topics of this paper.

57



8 Appendix

Let P be defined by proposition 2.5 with L given by (42) (X = 0.5) where hi = h2 = 1

for convenience. We shall show that LToP = 0, which will follow if we can prove that

LToE -1L(LTE -1 L) -1L T = Lrlo . Straightforward computations show that

Dll = D33 = t¢

LTE-1L =

where

D13 = T2DI2D23

and

The inverse is given by

with

1

o"1

Dll D12 Dla )
DT2 D22 D2a

D1T3 DT3 D33

1

O"r

/D12 = D_3 = T -1

/ do__!

o"1

o"r

1(to d2oo'_D:2=_ _oo + o.o2]

,a. d_k
=

k=0 o"k

20" o
7" = --

doo

Tll T12 T13 )
(LT_-,-1L) -1 = T T T22 T23

TT TT T33

Tll = T33 = D_ -1 + -- # D?_ D12DT2D1]
1 - #_r

_ o" 4)
T12 = T_ = (1 --_-1 7_r 2) vi-1 D12

# w T 2

T13 = T T = (1 - #o")(1 - o.r 2)
D1-11 D12 D2a D3-a1

and

T22 = (it - o.r4)(1 + _rr2)
(1-#o.)(1-o"r 2)

T -1
O" = D12D11 D12

# = o.r4 + __1(1 -- o.r=) _
//

tJ = D22 -- o"

Obviously, v is the Schur complement of D22. Let Z be defined by (40). Then

LTI°E-1L(LTZ-1L)-ILT = LT°Z-1L ( RS RS) Lr
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where (using T T = T23 and Tu = T33)

(T22/4 TT/2 )R= rl_/2 Tll

Furthermore,

( T_2/4 r_12 )S = T12/2 T13

LToE-1L = (X/go 0 dgo/a _ 2DT2)

Using D22 = (tC/ao + dgo/a2o)/2,

1
( _D22T22 -1- D1T2T12

But

LT°E-1L( RS RS)=

1

D22T T + 2DT2T1a -_D2:T22 + DT2T12 D2:T T + 2DT:Tla )

L_oZ_lt(R S) (1S n =

Also,

D2_T_+ 2D_,_T13= pD_,_D;)

Substituting 1 - aT _ = d_o/(tCao ) and the expression for/_ yields

and so

Consequently,

1

LT°E-IL(LTE-aL)-ILT-- 2doo

The j th block column of L T reads

...o

1

pDT12Dl11 - 2doo ( d01 "'" dOt )

--- (doo-dol ...-dor doo dol .--dot ) L T

0 ... 0 doje T ... doje T)

1

D22TT + 2DT2T13 2 + )

2_(# - _-:)- (_ + _,)(, - ,_-")
P = (1 - #o)(1 - ar 2)
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and

D22 TT Jl- 2D1T2713 _-2 (D1T2T13-3 t- D22 TT -31- DT2T11) - (D22 TT -4- 2DT2711)

Observing that T T = T23, DT2Tu = D23T33 it follows that the first parenthetical expres-

sion vanishes. Thus,



where the sumis the j:th block element of cj, j = O,...,r. Hence,

i. e._

LTo_-I L(LT_-I L)-I LT = LTo

In a similar fashion one shows that L20 also satisfies the above equation.

The simplest example is obtained by discretizing the Neumann conditions using the

standard divided difference D+ in both coordinate directions, i. e.,

I)11 -- I)01 : 0

7311 -- Vl0 = 0

(v,o - voo)/2 + (vo, - voo)/2 = 0
(81)

which leads to

16 -4 0 ... 0 -4 -8 0 ... 0

-2 14 0 ... 0 -4 -8 0 ... 0

0 0 0 ... 0 0 0 0 ... 0

_-lrtrT_-lr_-lrT__ 1 0 0 0 ... 0 0 0 0 ... 0

18 -2 -4 0 ... 0 14 -8 0 ... 0

-2 -4 0 ... 0 --4 l0 0 ... 0

0 0 0 ... 0 0 0 0 ... 0

0 0 0 ... 0 0 0 0 ... 0

(82)

Evidently, any vector v = Pu, P = I - P,-IL(LTE-1L)-ILT, satisfies (81). Furthermore,

by (82), vlo - Voo = Voa - Voo = 0, which also follows directly from (81).
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